Limited proliferation and telomere dysfunction following telomerase inhibition in immortal murine fibroblasts.

نویسندگان

  • Jessica Boklan
  • Gouri Nanjangud
  • Karen L MacKenzie
  • Chad May
  • Michel Sadelain
  • Malcolm A S Moore
چکیده

Telomerase is a ribonucleoprotein enzyme that functions to maintain telomeres, the terminal DNA that protects chromosomal integrity, regulating cellular replicative life span. Telomerase is not expressed in most normal human somatic cells but is active in stabilizing telomeres of certain self-renewing cell populations and most malignant cells, making the enzyme an appealing target for anticancer therapy. We describe here a novel cross-species approach to telomerase inhibition. Ectopic expression of the human telomerase catalytic reverse transcriptase component in murine cells inhibited endogenous murine telomerase activity. Using this approach, telomerase inhibition in immortal murine fibroblasts resulted in critical telomere shortening, leading to slowed proliferation, abnormal morphology, altered cell cycle, and telomere dysfunction with cytogenetic instability, followed by apoptotic cell death. Subpopulations of two telomerase-inhibited clones escaped widespread apoptosis, showing proliferative recovery in culture despite persistently inhibited telomerase activity with progressive telomere shortening and dysfunction. This study, by targeting immortal murine cells for telomerase inhibition, demonstrates the importance of telomerase to murine cell immortalization and telomere maintenance. Moreover, the murine model used here should prove useful in further evaluating telomerase inhibition as an anticancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomerase inhibition in RenCa, a murine tumor cell line with short telomeres, by overexpression of a dominant negative mTERT mutant, reveals fundamental differences in telomerase regulation between human and murine cells.

In contrast to human primary fibroblasts, mouse embryonic fibroblasts have telomerase activity, immortalize spontaneously in culture, and can be neoplastically transformed by oncogenic insult. Ectopic expression of the human telomerase catalytic subunit, human telomerase reverse transcriptase (hTERT), in human primary cells allows both spontaneous immortalization and neoplastic transformation b...

متن کامل

Disappearance of the telomere dysfunction-induced stress response in fully senescent cells.

Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-gamma nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-gamma foci were rarely observed in early-passage cells, they were readily...

متن کامل

Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.

Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by...

متن کامل

Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion

The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine...

متن کامل

P-86: Evaluation of Telomere Length, Telomerase and Telomeric Repeat Containing RNA (TERRA) Expression Levels in Cumulus Cells of PCOS Patients

Background Polycystic ovary syndrome (PCOS) is one of the reasons of infertility in women with chronic anovulation. Ovulation process is tightly regulated by molecular mechanisms controlling proliferation/differentiation of cells. Telomeres, TTAGGG tandem repeats, are transcribed into a non coding RNA, named TERRA. Recent studies suggest that TERRA sustain several important functions at chromos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 62 7  شماره 

صفحات  -

تاریخ انتشار 2002